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Figure 1: The USFS estimated that over 120 million trees died across California due to pest and drought over the past
decade, with severe loss occurring from 2016-2018. The spatial distribution of this process shifted between years but was
concentrated in the central and southern Sierra Nevada ecoregion, which is mapped in detail with this new dataset.

Introduction

California’s forests have experienced severe stress
from drought, heat, fires, and pest outbreaks over the
past decade. In this new era of megafire, tree mortality
is expected to exacerbate wildfire risk and further in-
crease the economic and human health costs of catas-
trophic fire. However, there are few datasets and wild-
fire modeling tools that can quantify and map these
effects, making it difficult to understand the rapidly
shifting landscapes of wildfire hazard and exposure,
and limiting the state’s ability to manage and mitigate
mortality-driven wildfire risks.

The Pyregence Tree Mortality Working Group (WG2)
is working to provide quantitative and qualitative eval-
uations of the impacts of elevated tree mortality and
surface fuel buildup on fire risk. This report de-
scribes a key data product developed by WG2: annual,
statewide, high resolution maps of tree mortality den-
sity from 2016-2018.

DATASETQUALITIES

• Metric: dead tree cover (%)

• Range: 0.0 - 1.0 (continuous)

• Spatial extent: California

• Spatial resolution: 30m

• Temporal extent: 2016-2018

• Temporal resolution: annual

DATASETDESIGN

Dead tree cover refers to the horizontal area of a pixel
occupied by dead trees, as viewed from above. It is
a direct analog to Canopy Cover, a canopy fuel met-
ric provided by LANDFIRE. Scaled from 0-1, it can be
interpreted as a sub-pixel fractional cover estimate.

This dataset was designed to provide spatially
and numerically continuous estimates of tree mor-
tality density that could be used as an input to the
next generation of wildfire behavior models. Sev-
eral of the dataset qualities—the spatial and tempo-
ral resolutions—were selected to align with typical fire
modeling and fuels mapping paradigms. The continu-
ous fuel load mapping approach, however, is a slight
departure from current fire modeling norms.

Spatially, many fire modeling groups quantify fuel
distributions based on the LANDFIRE family of fuel
maps, which are provided at 30m resolution. Tem-
porally, the USFS quantifies shifts in the geography
and intensity of tree mortality across California via
aerial detection surveys, which are collected annually
to track progressive mortality patterns.

We provide these datasets at 30m resolution to
match the spatial scale of other well-known fuels
data, updated annually to capture progressive mortal-
ity trends from 2016-2018, a period representing some
of the most extensive dieback of the past decade.

The continuous data type is a departure from tra-
ditional fuel models. Many fuel models, including
Scott & Burgan, are categorical datasets that link fuel
classes to a look-up table of biophysical parameters.
The dead tree cover metric instead directly quantifies
continuous variation in observed tree mortality.
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Figure 2: Model validation compared to machine learning training data (A) and to a group of field plots (B, C) independently
collected by researchers at the USGS Western Ecological Research Center. We found that tree mortality predictions are
generally conservative relative to each reference dataset. A) Compared to the high resolution training data, satellite-based
model predictions show low prediction bias with median residual errors centered on zero. Mean absolute error scores were
4.2%, and root mean squared error scores were 9.0%. This difference between MAE and RMSE indicates higher error rates
in areas of extreme mortality, where satellite model predictions were generally lower than NAIP observations. B) USGS
researchers used a Generalized Random Tessellation Stratified Sampling approach to measure tree mortality in a series of
field plots in Sequoia & Kings Canyon National Park. C) We compared histograms of the mortality fractions measured in the
field (orange) with satellite predictions (blue), showing a lower frequency of extreme mortality predictions in the satellite
maps. In addition to the epistemic model uncertainty, this conservative pattern is likely driven in part by differences in
measurement type. Field mortality fractions were estimated by comparing the dead to live ratio of basal area; satellite pre-
dictions estimate the cover fraction of dead trees. Both are horizontal area measurements, but cover fraction is normalized
to include patterns like canopy closure or bare soil fraction. Basal area ratios solely measure the relative woody stem area
in a plot occupied by dead trees, with no consideration of foliage density, stem density, or total vegetation cover. Basal area
mortality fractions will by definition always be higher than corresponding cover fractions, which we expect explains much
of the disagreement.

MODELINGMETHODS

We trained a deep learning model to map dead tree
cover using multi-temporal satellite data from multi-
spectral and radar sensors. The underlying response
variable was created from 1m resolution maps of red-
phase conifer mortality, which was averaged to 10m
to match the resolution of the satellite covariates. The
10m model was applied to statewide data across each
year and masked using a 10m canopy cover map to re-
duce false positive predictions over bare ground. The
masked model predictions were then averaged to 30m
to match the desired output resolution.

High resolution training data were generated
across a series of priority sites using a combination
of machine learning and traditional earth observa-
tions/image interpretation techniques. We first ap-
plied k-means clustering to 1m resolution National
Agriculture Imagery Program (NAIP) data from 2016
and 2018, which groups each pixel into a series of
spectrally-similar clusters. Since leaf-on, red-phase
dead trees are spectrally similar to bare ground and
leaf litter across the range measured by NAIP, these
land cover types were often clustered together. So we
developed a deep learning model to map tree cover us-
ing NAIP imagery, trained on high resolution, LiDAR-
derived rasters, and used this to separate dead trees

from bare ground and leaf litter. These high resolution,
binary (0/1) maps of dead trees were created for four
sites to capture mortality gradients in the ecoregion
where tree loss was most severe: one in the northern
Sierra Nevada ecoregion, two in Sierra National Forest,
and one in Sequoia & Kings Canyon National Park.

The binary maps of tree cover were averaged to
10m, now continuously scaled from 0-1, represent-
ing the fraction of each pixel occupied by dead trees,
and matching the resolution of the satellite covari-
ates. These included 10-band multi-spectral data from
Sentinel-2 and 2-band radar backscatter data from
Sentinel-1. The full feature stack was 24 bands, as we
included observations from spring and fall time steps.

Multi-spectral data can measure the greenness,
dryness, and structure of vegetation, as optical data
are directly sensitive to the fractional cover of photo-
synthetic vegetation, non-photosynthetic vegetation,
and bare soil. Radar data are a good complement
to multi-spectral data because backscatter signals are
directly sensitive to canopy water content. Short-
wavelength C-band radar measured by Sentinel-1 is
most sensitive to water content in leaves and branches.
These features are important because, in red-phase
mortality, trees break down their photosynthetic pig-
ments, transitioning leaves to non-photosynthetic tis-
sue, which increases spectral discrimination from live
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trees. Less photosynthesis also means less evapotran-
spiration, which leads to lower water content in leaves
and branches.

Multi-temporal satellite data are critical for dis-
criminating between red phase mortality and phe-
nological senescence. Many of the underlying bio-
physical changes occur in seasonal leaf-off sequences,
like the loss of chlorophyll and the drying and drop-
ping of leaves, increasing the likelihood of false pos-
itive detection. Fortunately, the timing of these
changes is different between mortality and senes-
cence. Phenologically-driven leaf-off conditions are
typically short, and balanced by long periods of leaf-on
conditions. Post-mortality green-up is rare, however,
and red-phase conditions tend to persist for at least a
year. Multi-temporal satellite observations quantify-
ing intra-annual variation is critical for distinguishing
between these forms of canopy expression. So data
from both seasons and both sensors were merged in a
24-band stack then rotated with principal components
analysis and normalized to reduce feature covariance
and standardize unit scales.

We trained a U-net model, a 2-D Convolutional
Neural Network model architecture that belongs to a
class of modern pattern recognition algorithms. These
models are particularly useful in ecological contexts.
2D convolutions applied at each block quantify the
spatial orientations of nearby objects, adding critical
contextual information about the surrounding neigh-
borhood to the model, such as the density of nearby
trees or the presence of a road. Since there are such
strong density-dependent spatial patterns in tree mor-
tality distributions—driven locally by bark beetle pop-
ulation density and tree species composition, and by
drought and elevation at landscape scales—contextual
information is a critical feature to include for mapping
mortality with satellite data.

We sampled image tiles from a series of randomly-
sampled point locations across the four sites. We sam-
pled points at a rate of 5 points per km2, held out 15%
of samples as our test data, then applied a subsequent
85/15 training/validation split for model training. Our
final training data included 91,092 training samples,
16,075 validation samples, and 18,909 test samples.
Each sample was of shape [64, 64, 24] (height, width,
depth). To adjust for sample imbalance—the sparsity
of dead relative to live/no trees—we computed pixel-
wise sample weights based on an inverse sample fre-
quency algorithm to minimize under-prediction.

The first layer of our network architecture was a
1x1 convolution layer, otherwise known as a network-
in-network transformer, which applies dimensionality
reduction to reduce the likelihood of overfitting. Then,
we applied a traditional U-Net architecture with a 4-

block structure of [4, 3, 2, 2], where each value rep-
resents the number of sequential 2D convolution lay-
ers in each block. 3x3 convolutions were applied and
zero-padded to maintain the 2D shape at each block.
Downsampling and upsampling was applied at each
block, with passthrough layers concatenating features
from the corresponding descending and ascending U-
Net blocks. We applied a random dropout rate of 10%
at each layer, used ReLU for the internal activation
function, and a linear transformation for the output
layer activation function. Mean squared error was the
loss function, and we used the Adam optimizer with a
learning rate of 1e−4. Model results are discussed in
detail in Figure 2.

Conclusions

These satellite-derived maps of tree mortality were
designed to provide a quantitative, spatially-explicit
evaluation of the impacts of elevated mortality on sur-
face fuel buildup and fire risk. The mapped patterns
are consistent with independent USFS measurements
of mortality (Fig. 3) and clearly align with the extent of
a recent high intensity, mortality-driven wildfire (Fig.
4). This dataset reveals the spatial and temporal pat-
terns of progressive mortality in fine detail, and we ex-
pect it could provide great value to the state for un-
derstanding and mitigating the wildfire risks posed by
extreme tree mortality events.

Figure 3: Satellite maps predict higher dead tree cover
rates in regions of moderate and high severity mortality, as
mapped by the USFS Aerial Detection Survey (ADS).
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Appendix A. Progressivemortality preceding the Creek Fire

2016 mortality
2017 mortality
2018 mortality

Dead tree cover

Figure 4: The Creek Fire, outlined in white, burned at extremely high intensity in August 2020 following increases in
mortality from 2016-2018. This was one of the first instances of an uncontrolled, high intensity fire burning a region that
experienced severe, progressive tree mortality. As the burn perimeter approximates the spatial patterns of satellite-mapped
tree mortality, we expect these satellite-derived maps to improve predictions of future mortality-driven wildfires.
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Appendix B. Statewide progressive treemortality composite
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Figure 5: Progressive shifts in tree mortality distributions are mapped here with an RGB composite, where red tracks tree
mortality in 2016, green tracks mortality in 2017, and blue tracks mortality in 2018. This map shows how dead tree dis-
tributions shifted up-slope in the central and southern Sierra Nevada over this period. Mortality was pronounced in the
Klamath and Cascades ecoregions of northern California in 2016 (red), and increased in intensity in the Southern California
Mountains ecoregion from 2017-2018 (green, blue).
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Appendix C. Comparison to USFS Aerial Detection Survey data
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Figure 6: Comparisons between satellite tree mortality maps and USFS Aerial Detection Surveys show agreement in broad
spatial mortality patterns, even in mixed-use wildland-urban interface areas. A) 1m NAIP imagery from 2016 for a region
in the central Sierra Nevada ecoregion. B) Satellite dead tree cover predictions covering the same extent. C) ADS survey
polygons, colored by dead trees per acre. Satellite predictions track the spatial patterns of mortality with high precision.
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